MATH 2028 Honours Advanced Calculus II
 2023-24 Term 1
 Problem Set 9
 due on Dec 1, 2023 (Friday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through Blackboard on/before the due date. Please remember to write down your name and student ID. No late homework will be accepted.

Notations: We will use $\mathbb{A}^{k}\left(\mathbb{R}^{n}\right)$ to denote the space of differential k-forms on \mathbb{R}^{n}.

Problems to hand in

1. Let $n=\left(n_{1}, n_{2}, n_{3}\right) \in \mathbb{R}^{3}$ be a unit vector and $v, w \in \mathbb{R}^{3}$ be orthogonal to n. Let

$$
\omega=n_{1} d y \wedge d z+n_{2} d z \wedge d x+n_{3} d x \wedge d y
$$

Prove that $\omega(v, w)$ is the signed area of the parallelogram spanned by v and w (the sign being determined by whether $\{n, v, w\}$ forms a right-handed orthonormal basis for \mathbb{R}^{3}).
2. We say that a k-form is closed if $d \omega=0$ and exact if $\omega=d \eta$ for some $(k-1)$-form η.
(a) Prove that an exact form is closed. Is every closed form exact?
(b) Prove that if ω and ϕ are closed, then $\omega \wedge \phi$ is closed.
(c) Prove that if ω is exact and ϕ is closed, then $\omega \wedge \phi$ is exact.
3. Compute the area of the surface in \mathbb{R}^{4} parametrized by

$$
g(u, v)=\left(u, v, u^{2}-v^{2}, 2 u v\right)
$$

with $(u, v) \in \mathbb{R}^{2}$ satisfying $u^{2}+v^{2} \leq 1$.
4. (a) Suppose M and M^{\prime} are two compact oriented k-dimensional submanifolds of \mathbb{R}^{n} with boundary, and suppose $\partial M=\partial M^{\prime}$. Prove that for any $(k-1)$ form ω, we have

$$
\int_{M} d \omega=\int_{M^{\prime}} d \omega
$$

(b) Use (a) to compute $\int_{M} d \omega$ where M is the upper hemisphere $x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0$, oriented with outward-pointing normal having positive z-component and

$$
\omega=\left(x^{3}+3 x^{2} y-y\right) d x+\left(y^{3} z+x+x^{3}\right) d y+\left(x^{2}+y^{2}+z\right) d z
$$

Suggested Exercises

1. Suppose $\omega \in \Lambda^{k}\left(\mathbb{R}^{n}\right)^{*}$ and k is odd. Prove that $\omega \wedge \omega=0$. Give an example to show that it does not hold when k is even.
2. Let $v, w \in \mathbb{R}^{3}$. Prove that $d x(v \times w)=d y \wedge d z(v, w), d y(v \times w)=d z \wedge d x(v, w)$ and $d z(v \times w)=$ $d x \wedge d y(v, w)$.
3. Can there be a function f so that $d f$ is the given 1-form ω (everywhere ω is defined)? If so, find f.
(a) $\omega=-y d x+x d y$
(b) $\omega=2 x y d x+x^{2} d y$
(c) $\omega=y d x+z d y+x d z$
(d) $\omega=\left(x^{2}+y z\right) d x+(x z+\cos y) d y+(z+x y) d z$
(e) $\omega=\frac{x}{x^{2}+y^{2}} d x+\frac{y}{x^{2}+y^{2}} d y$
(f) $\omega=-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$
4. For each of the following k-forms ω, can there be a $(k-1)$-form η (defined wherever ω is) so that $d \eta=\omega$?
(a) $\omega=d x \wedge d y$
(b) $\omega=x d x \wedge d y$
(c) $\omega=z d x \wedge d y$
(d) $\omega=z d x \wedge d y+y d x \wedge d z+z d y \wedge d z$
(e) $\omega=x d x \wedge d y+y d x \wedge d z+z d y \wedge d z$
(f) $\omega=\left(x^{2}+y^{2}+z^{2}\right)^{-1}(x d y \wedge d z+y d z \wedge d x+z d x \wedge d y$
5. Define $*: \mathcal{A}^{1}\left(\mathbb{R}^{3}\right) \rightarrow \mathcal{A}^{2}\left(\mathbb{R}^{3}\right)$ by

$$
*(d x)=d y \wedge d z, \quad *(d y)=d z \wedge d x \quad \text { and } \quad *(d z)=d x \wedge d y
$$

extending by linearity. If f is a smooth function, show that

$$
d *(d f)=\left(\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}\right) d x \wedge d y \wedge d z
$$

6. Suppose $\omega \in \mathcal{A}^{1}\left(\mathbb{R}^{n}\right)$ and there is a nowhere vanishing function λ so that $\lambda \omega=d f$ for some f. Prove that $\omega \wedge d \omega=0$.
7. Let $g(\rho, \phi, \theta):(0, \infty) \times(0, \pi) \times(0,2 \pi) \rightarrow \mathbb{R}^{3}$ be the spherical coordinates map, i.e.

$$
g(\rho, \phi, \theta)=(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)
$$

Compute $g^{*}(d x \wedge d y \wedge d z)$.
8. In each of the following, compute the pullback $g^{*} \omega$ and verify that $g^{*}(d \omega)=d\left(g^{*} \omega\right)$:
(a) $g(v)=(3 \cos 2 v, 3 \sin 2 v), \omega=-y d x+x d y$
(b) $g(u, v)=(\cos u, \sin u, v), \omega=z d x+x d y+y d z$
(c) $g(u, v)=(\cos u, \sin v, \sin u, \cos v), \omega=\left(-x_{3} d x_{1}+x_{1} d x_{3}\right) \wedge\left(-x_{2} d x_{4}+x_{4} d x_{2}\right)$
9. Suppose that $k \leq n$. Let $\omega_{1}, \cdots, \omega_{k} \in\left(\mathbb{R}^{n}\right)^{*}$ and suppose that $\sum_{i=1}^{k} d x_{i} \wedge \omega_{i}=0$. Prove that there exist $a_{i j} \in \mathbb{R}$ such that $a_{j i}=a_{i j}$ and $\omega_{i}=\sum_{j=1}^{k} a_{i j} d x_{j}$.
10. Suppose $U \subset \mathbb{R}^{m}$ is open and $g: U \rightarrow \mathbb{R}^{n}$ is smooth. Prove that for any $\omega \in \mathcal{A}^{k}\left(\mathbb{R}^{n}\right)$ and $v_{1}, \cdots, v_{k} \in \mathbb{R}^{m}$, we have

$$
g^{*} \omega(a)\left(v_{1}, \cdots, v_{k}\right)=\omega(g(a))\left(D g(a) v_{1}, \cdots, D g(a) v_{k}\right) .
$$

11. Check that the boundary orientation on $\partial \mathbb{R}_{+}^{k}$ is $(-1)^{k}$ times the usual orientation on \mathbb{R}^{k-1}.
12. Let C be the intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $2 x+3 y-z=1$, oriented counterclockwise as viewed from high above the $x y$-plane. Evaluate

$$
\int_{C} y d x-2 z d y+x d z
$$

directly and by applying Stokes' Theorem.
13. Compute $\int_{C}(y-z) d x+(z-x) d y+(x-y) d z$ where C is the intersection of the cylinder $x^{2}+y^{2}=a^{2}$ and the plane $\frac{x}{a}+\frac{z}{b}=1$, oriented clockwise as viewed from high above the $x y$-plane.
14. Let C be the intersection of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and the plane $x+y+z=0$, oriented counterclockwise as viewed from high above the $x y$-plane. Evaluate

$$
\int_{C} 2 z d x+3 x d y-d z .
$$

15. Let $\Omega \subset \mathbb{R}^{3}$ be the region bounded above by the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and below by the plane $z=0$. Compute

$$
\int_{\partial \Omega} x z d y \wedge d z+y z d z \wedge d x+\left(x^{2}+y^{2}+z^{2}\right) d x \wedge d y
$$

directly and by applying Stokes' Theorem.
16. Let $\omega=y^{2} d y \wedge d z+x^{2} d z \wedge d x+z^{2} d x \wedge d y$, and M be the solid paraboloid $0 \leq z \leq 1-x^{2}-y^{2}$. Evaluate $\int_{\partial M} \omega$ directly and by applying Stokes' Theorem.
17. Let M be the surface of the paraboloid $z=1-x^{2}-y^{2} \geq 0$, oriented so that the outward-pointing normal has positive z-component. Let $F(x, y, z)=\left(x^{2} z, y^{2} z, x^{2}+y^{2}\right)$. Compute $\int_{M} F \cdot \vec{n} d \sigma$ directly and by applying Stokes' Theorem.
18. Compute $\int_{M} d \omega$ where M is the portion of the paraboloid $z=x^{2}+y^{2}$ lying beneath $z=4$, oriented with outward-pointing normal having positive z-component, and $\omega=y d x+z d y+x d z$.
19. Let $M=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq x_{4} \leq 1\right\}$, with the standard orientation inherited from \mathbb{R}^{4}. Evaluate

$$
\int_{\partial M}\left(x_{1}^{3} x_{2}^{4}+x_{4}\right) d x_{1} \wedge d x_{2} \wedge d x_{3} .
$$

20. Let S be the portion of the cylinder $x^{2}+y^{2}=a^{2}$ lying above the $x y$-plane and below the sphere $x^{2}+(y-a)^{2}+z^{2}=4 a^{2}$. Let C be the intersection of the cylinder and sphere, oriented clockwise as viewed from high above the $x y$-plane.
(a) Evaluate $\int_{S} z d \sigma$.
(b) Use (a) to compute $\int_{C} y\left(z^{2}-1\right) d x+x\left(1-z^{2}\right) d y+z^{2} d z$.
21. Let C be the intersection of the sphere $x^{2}+y^{2}+z^{2}=1$ and the plane $x+y+z=0$, oriented counterclockwise as viewed from high above the $x y$-plane. Evaluate $\int_{C} z^{3} d s$.

Challenging Exercises

1. Prove that there is a unique linear operator $d: \mathcal{A}^{k}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{A}^{k+1}\left(\mathbb{R}^{n}\right)$ for all k such that
(1) $d f=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} d x_{j}$ for all functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
(2) $d(f \omega)=d f \wedge \omega+f d \omega$ for all functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\omega \in \mathcal{A}^{k}\left(\mathbb{R}^{n}\right)$
(3) $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$ for any $\omega \in \mathcal{A}^{k}\left(\mathbb{R}^{n}\right), \eta \in \mathcal{A}^{\ell}\left(\mathbb{R}^{n}\right)$
(4) $d(d \omega)=0$ for all $\omega \in \mathcal{A}^{k}\left(\mathbb{R}^{n}\right)$
2. Let $f: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function whose graph is the surface S.
(a) Consider the area 2 -form σ on S given by

$$
\sigma=\frac{1}{\sqrt{1+|\nabla f|^{2}}}\left(-\frac{\partial f}{\partial x} d y \wedge d z-\frac{\partial f}{\partial y} d z \wedge d x+d x \wedge d y\right) .
$$

Show that $d \sigma=0$ if and only if f satisfies the minimal surface equation:

$$
\left(1+\left(\frac{\partial f}{\partial y}\right)^{2}\right) \frac{\partial^{2} f}{\partial x^{2}}-2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial x \partial y}+\left(1+\left(\frac{\partial f}{\partial x}\right)^{2}\right) \frac{\partial^{2} f}{\partial y^{2}}=0
$$

(b) Show that for any compact oriented surface $N \subset \mathbb{R}^{3}$, we have

$$
\int_{N} \sigma \leq \operatorname{area}(N)
$$

and equality holds if and only if N is parallel to S.
(c) Suppose further that $\partial N=\partial S$. Prove that area $(S) \leq \operatorname{area}(N)$.
3. (a) Prove that a k-dimensional submanifold with boundary $M \subset \mathbb{R}^{n}$ is orientable if and only if there is a nowhere-zero k-form on M.
(b) Show that M is orientable if and only if there is a volume form globally defined on M.

