MATH 2028 Honours Advanced Calculus II 2023-24 Term 1 Problem Set 9

due on Dec 1, 2023 (Friday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through Blackboard on/before the due date. Please remember to write down your name and student ID. No late homework will be accepted.

Notations: We will use $\mathbb{A}^k(\mathbb{R}^n)$ to denote the space of differential k-forms on \mathbb{R}^n .

Problems to hand in

1. Let $n = (n_1, n_2, n_3) \in \mathbb{R}^3$ be a unit vector and $v, w \in \mathbb{R}^3$ be orthogonal to n. Let

 $\omega = n_1 dy \wedge dz + n_2 dz \wedge dx + n_3 dx \wedge dy.$

Prove that $\omega(v, w)$ is the signed area of the parallelogram spanned by v and w (the sign being determined by whether $\{n, v, w\}$ forms a right-handed orthonormal basis for \mathbb{R}^3).

- 2. We say that a k-form is closed if $d\omega = 0$ and exact if $\omega = d\eta$ for some (k-1)-form η .
 - (a) Prove that an exact form is closed. Is every closed form exact?
 - (b) Prove that if ω and ϕ are closed, then $\omega \wedge \phi$ is closed.
 - (c) Prove that if ω is exact and ϕ is closed, then $\omega \wedge \phi$ is exact.
- 3. Compute the area of the surface in \mathbb{R}^4 parametrized by

$$g(u, v) = (u, v, u^2 - v^2, 2uv)$$

with $(u, v) \in \mathbb{R}^2$ satisfying $u^2 + v^2 \leq 1$.

4. (a) Suppose M and M' are two compact oriented k-dimensional submanifolds of \mathbb{R}^n with boundary, and suppose $\partial M = \partial M'$. Prove that for any (k-1) form ω , we have

$$\int_M d\omega = \int_{M'} d\omega.$$

(b) Use (a) to compute $\int_M d\omega$ where M is the upper hemisphere $x^2 + y^2 + z^2 = a^2$, $z \ge 0$, oriented with outward-pointing normal having positive z-component and

$$\omega = (x^3 + 3x^2y - y) \, dx + (y^3z + x + x^3) \, dy + (x^2 + y^2 + z) \, dz.$$

Suggested Exercises

1. Suppose $\omega \in \Lambda^k(\mathbb{R}^n)^*$ and k is odd. Prove that $\omega \wedge \omega = 0$. Give an example to show that it does not hold when k is even.

- 2. Let $v, w \in \mathbb{R}^3$. Prove that $dx(v \times w) = dy \wedge dz(v, w), dy(v \times w) = dz \wedge dx(v, w)$ and $dz(v \times w) = dx \wedge dy(v, w)$.
- 3. Can there be a function f so that df is the given 1-form ω (everywhere ω is defined)? If so, find f.
 - (a) $\omega = -y \, dx + x \, dy$ (b) $\omega = 2xy \, dx + x^2 \, dy$ (c) $\omega = y \, dx + z \, dy + x \, dz$ (d) $\omega = (x^2 + yz) \, dx + (xz + \cos y) \, dy + (z + xy) \, dz$ (e) $\omega = \frac{x}{x^2 + y^2} \, dx + \frac{y}{x^2 + y^2} \, dy$ (f) $\omega = -\frac{y}{x^2 + y^2} \, dx + \frac{x}{x^2 + y^2} \, dy$
- 4. For each of the following k-forms ω , can there be a (k-1)-form η (defined wherever ω is) so that $d\eta = \omega$?
 - (a) $\omega = dx \wedge dy$
 - (b) $\omega = x \, dx \wedge dy$
 - (c) $\omega = z \, dx \wedge dy$
 - (d) $\omega = z \, dx \wedge dy + y \, dx \wedge dz + z \, dy \wedge dz$
 - (e) $\omega = x \, dx \wedge dy + y \, dx \wedge dz + z \, dy \wedge dz$
 - (f) $\omega = (x^2 + y^2 + z^2)^{-1} (x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy$
- 5. Define $*: \mathcal{A}^1(\mathbb{R}^3) \to \mathcal{A}^2(\mathbb{R}^3)$ by

$$*(dx) = dy \wedge dz, \quad *(dy) = dz \wedge dx \text{ and } *(dz) = dx \wedge dy,$$

extending by linearity. If f is a smooth function, show that

$$d * (df) = \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}\right) dx \wedge dy \wedge dz.$$

- 6. Suppose $\omega \in \mathcal{A}^1(\mathbb{R}^n)$ and there is a nowhere vanishing function λ so that $\lambda \omega = df$ for some f. Prove that $\omega \wedge d\omega = 0$.
- 7. Let $g(\rho, \phi, \theta) : (0, \infty) \times (0, \pi) \times (0, 2\pi) \to \mathbb{R}^3$ be the spherical coordinates map, i.e.

$$g(\rho, \phi, \theta) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi).$$

Compute $g^*(dx \wedge dy \wedge dz)$.

- 8. In each of the following, compute the pullback $g^*\omega$ and verify that $g^*(d\omega) = d(g^*\omega)$:
 - (a) $g(v) = (3\cos 2v, 3\sin 2v), \omega = -y \, dx + x \, dy$
 - (b) $g(u, v) = (\cos u, \sin u, v), \ \omega = z \ dx + x \ dy + y \ dz$
 - (c) $g(u, v) = (\cos u, \sin v, \sin u, \cos v), \ \omega = (-x_3 \ dx_1 + x_1 \ dx_3) \land (-x_2 \ dx_4 + x_4 \ dx_2)$
- 9. Suppose that $k \leq n$. Let $\omega_1, \dots, \omega_k \in (\mathbb{R}^n)^*$ and suppose that $\sum_{i=1}^k dx_i \wedge \omega_i = 0$. Prove that there exist $a_{ij} \in \mathbb{R}$ such that $a_{ji} = a_{ij}$ and $\omega_i = \sum_{j=1}^k a_{ij} dx_j$.

10. Suppose $U \subset \mathbb{R}^m$ is open and $g: U \to \mathbb{R}^n$ is smooth. Prove that for any $\omega \in \mathcal{A}^k(\mathbb{R}^n)$ and $v_1, \dots, v_k \in \mathbb{R}^m$, we have

$$g^*\omega(a)(v_1,\cdots,v_k) = \omega(g(a))(Dg(a)v_1,\cdots,Dg(a)v_k).$$

- 11. Check that the boundary orientation on $\partial \mathbb{R}^k_+$ is $(-1)^k$ times the usual orientation on \mathbb{R}^{k-1} .
- 12. Let C be the intersection of the cylinder $x^2 + y^2 = 1$ and the plane 2x + 3y z = 1, oriented counterclockwise as viewed from high above the xy-plane. Evaluate

$$\int_C y \, dx - 2z \, dy + x \, dz$$

directly and by applying Stokes' Theorem.

- 13. Compute $\int_C (y-z) dx + (z-x) dy + (x-y) dz$ where C is the intersection of the cylinder $x^2 + y^2 = a^2$ and the plane $\frac{x}{a} + \frac{z}{b} = 1$, oriented clockwise as viewed from high above the xy-plane.
- 14. Let C be the intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and the plane x + y + z = 0, oriented counterclockwise as viewed from high above the xy-plane. Evaluate

$$\int_C 2z \, dx + 3x \, dy - dz.$$

15. Let $\Omega \subset \mathbb{R}^3$ be the region bounded above by the sphere $x^2 + y^2 + z^2 = a^2$ and below by the plane z = 0. Compute

$$\int_{\partial\Omega} xz \, dy \wedge dz + yz \, dz \wedge dx + (x^2 + y^2 + z^2) \, dx \wedge dy$$

directly and by applying Stokes' Theorem.

- 16. Let $\omega = y^2 dy \wedge dz + x^2 dz \wedge dx + z^2 dx \wedge dy$, and M be the solid paraboloid $0 \le z \le 1 x^2 y^2$. Evaluate $\int_{\partial M} \omega$ directly and by applying Stokes' Theorem.
- 17. Let *M* be the surface of the paraboloid $z = 1 x^2 y^2 \ge 0$, oriented so that the outward-pointing normal has positive z-component. Let $F(x, y, z) = (x^2 z, y^2 z, x^2 + y^2)$. Compute $\int_M F \cdot \vec{n} \, d\sigma$ directly and by applying Stokes' Theorem.
- 18. Compute $\int_M d\omega$ where *M* is the portion of the paraboloid $z = x^2 + y^2$ lying beneath z = 4, oriented with outward-pointing normal having positive *z*-component, and $\omega = y \, dx + z \, dy + x \, dz$.
- 19. Let $M = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 \le x_4 \le 1\}$, with the standard orientation inherited from \mathbb{R}^4 . Evaluate

$$\int_{\partial M} (x_1^3 x_2^4 + x_4) \ dx_1 \wedge dx_2 \wedge dx_3.$$

- 20. Let S be the portion of the cylinder $x^2 + y^2 = a^2$ lying above the xy-plane and below the sphere $x^2 + (y-a)^2 + z^2 = 4a^2$. Let C be the intersection of the cylinder and sphere, oriented clockwise as viewed from high above the xy-plane.
 - (a) Evaluate $\int_S z \, d\sigma$.
 - (b) Use (a) to compute $\int_C y(z^2 1) dx + x(1 z^2) dy + z^2 dz$.

21. Let C be the intersection of the sphere $x^2 + y^2 + z^2 = 1$ and the plane x + y + z = 0, oriented counterclockwise as viewed from high above the xy-plane. Evaluate $\int_C z^3 ds$.

Challenging Exercises

- 1. Prove that there is a unique linear operator $d: \mathcal{A}^k(\mathbb{R}^n) \to \mathcal{A}^{k+1}(\mathbb{R}^n)$ for all k such that
 - (1) $df = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} dx_j$ for all functions $f : \mathbb{R}^n \to \mathbb{R}$
 - (2) $d(f\omega) = df \wedge \omega + f \, d\omega$ for all functions $f : \mathbb{R}^n \to \mathbb{R}$ and $\omega \in \mathcal{A}^k(\mathbb{R}^n)$
 - (3) $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$ for any $\omega \in \mathcal{A}^k(\mathbb{R}^n), \eta \in \mathcal{A}^\ell(\mathbb{R}^n)$
 - (4) $d(d\omega) = 0$ for all $\omega \in \mathcal{A}^k(\mathbb{R}^n)$
- 2. Let $f: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ be a smooth function whose graph is the surface S.
 - (a) Consider the area 2-form σ on S given by

$$\sigma = \frac{1}{\sqrt{1 + |\nabla f|^2}} \left(-\frac{\partial f}{\partial x} \, dy \wedge dz - \frac{\partial f}{\partial y} \, dz \wedge dx + dx \wedge dy \right).$$

Show that $d\sigma = 0$ if and only if f satisfies the minimal surface equation:

$$\left(1 + \left(\frac{\partial f}{\partial y}\right)^2\right)\frac{\partial^2 f}{\partial x^2} - 2\frac{\partial f}{\partial x}\frac{\partial f}{\partial y}\frac{\partial^2 f}{\partial x\partial y} + \left(1 + \left(\frac{\partial f}{\partial x}\right)^2\right)\frac{\partial^2 f}{\partial y^2} = 0.$$

(b) Show that for any compact oriented surface $N \subset \mathbb{R}^3$, we have

$$\int_N \sigma \le \operatorname{area}(N)$$

and equality holds if and only if N is parallel to S.

- (c) Suppose further that $\partial N = \partial S$. Prove that $\operatorname{area}(S) \leq \operatorname{area}(N)$.
- 3. (a) Prove that a k-dimensional submanifold with boundary $M \subset \mathbb{R}^n$ is orientable if and only if there is a nowhere-zero k-form on M.
 - (b) Show that M is orientable if and only if there is a volume form globally defined on M.